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Abstract. It has been shown by simulation by Baumgartner and Muthukumar, and b) a 
theoretical model by Edwards and Muthukumar, that disorder localises the locus of a 
random polymer. This work is extended here to include excluded volume effects and we 
suggest a model of how the statistics of a polymer lying on a surface is affected by the 
roughness of the surface. It is shown that an appropriate equation for the mean size of 
the polymer R is derived from an entropy R 2 /  L +  L /  R ’ +  w (  L /  R ) ’  - v L  In R corresponding 
to the three-dimensional form R’/L+ L / R ’ +  w L Z / R 3 -  v L / R  where w is the excluded 
volume, v is the ‘scattering power’ of the disorder and L is the length of the polymer. For 
w small the polymer localises but, however small w is, for large enough L the excluded 
volume becomes dominant. The localised radius is independent of L and is proportional 

on a surface and U- ’  in three dimensions. A remarkable intermediate case arises 
in which R = u L / v  for small w. 

to  u - I / z  

1. Introduction 

A remarkable simulation by Baumgartner and  Muthukumar (1987) has shown that, 
when a random flight in three dimensions encounters randomly placed obstacles, for 
example forbidden sites, in a lattice simulation, the walk localises so that, whereas for 
small number N of steps I one has the Einstein relation R2 = N12, for a large number 
of steps one eventually reaches R 2  = V2,  i.e. an  interpolation formula might be 

R2= ~ - ~ [ 1  -exp(-N12u2)] 

where U is a measure of the concentration of the obstacles, and, where it is an  appropriate 
concept, their scattering cross section. 

Edwards and Muthukumar (1988) have shown that a simple analytic model can 
be used to derive these results. In this paper we consider the problem of the walk on 
a surface with excluded volume interactions. The reason for this is that the three- 
dimensional problem, although a prime candidate for simulation, is not easily available 
experimentally. The polymer in a sponge, for example, has other features than just 
obstacles; it is rather a series of channels, which requires and indeed has received 
different consideration. A surface, however, is a prime focus of polymer interest and  
a rough surface is in fact a standard situation. It is therefore worthwhile to study the 
two-dimensional problem. To  be realistic we have included excluded volume. Our 
calculation in the next section will be at a crude intuitive level, but will result in some 
very simple formulae which give one a good feeling for the problem. The results are 
in accord with the intuitive feeling that excluded volume will oppose localisation, and  
we predict that a sufficiently long polymer will settle into a random-walk statistic with 
an  effective step length of w/u, where w is the excluded volume and  U measures the 
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effect of the ‘scattering’, i.e. the roughness of the surface. A more elaborate analysis 
is given in § 3 where the problems involved in a complete theory are stated. 

2. The extrapolation formula 

Suppose the probability of finding the random walk, which starts at the origin, to have 
its endpoint at r is P(r,  [VI), where [ VI denotes the fact that there is a random 
background. 

Then 

(r2)=({ d3rr2P(r , [V]))  (1) 

where ( ) means an average over [ VI. Thus if the number of configurations is O( r, [ VI) 
so that 

then 

This is the ‘quenched’ average. The ‘annealed’ average is 

and has been studied by Thirumalai (1988). The quenched average has a fixed 
background and the average corresponds to the fact that, for a macroscopic sample, 
the various configurations of [ V I  will all be represented and a physical measurement 
of many random walks will be represented by equation (3). The annealed average 
corresponds to the distribution [VI being in equilibrium with the random walks and 
not being frozen. The problem is now clear: it is very awkward to calculate r 2 0  and 
{ 0, divide them and then average. But we can learn from the annealed case: suppose 
[ V I  is a set of potentials centred around points R, and that [VI is soft, but the R, 
numerous. Then a convenient compact notation is the Wiener integral for the locus 
for the walk r(s) :  

a={ [6r]exp(-(3121) l o L d s r ” - J ’ : d s ~  a V(r(s)-R,)). 

In the case of many soft potentials, if one takes the mean of V to be zero 

d3 R, ds c v(r (s ) -Ra))  

N 

=I “exp(-jOL a 

= ( I - V + ~  J >” 

= d3 R, exp( -joL ds V(r(s) - R ) )  
vol) 

d3Ra V ( r - R ) V ( R - r ) + .  . . I 
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Now, as IJJ V V is small and N large, the limit is exp(-cVz) provided we take 
VI = 5 V = 0, where c is the concentration of the R,, i.e. N/(vol) and 

d3 R, 
V, = N loL ds,  loL ds, 1 - V( r(s,)  - R )  V( r( s a )  - R )  

(vel) 
( 7 )  

where U = N ( J  d3r  V’( r)) .  Thus in the limit of a large number of soft potentials, which 
are now taken to be short range compared to the polymer dimension, 

Note the positive sign in front of U. Alternatively one could directly postulate that the 
functional probability of finding V(r(s))  is given by exp[-(1/2u) 5 d3r  V’(r)], which 
again gives equation (9). Thus the annealed problem amounts to that of a self-attracting 
walk. The quenched problem can be studied in the same way if one uses the replica 
method (Edwards and Muthukumar 1988) but we will not develop this here but rather 
make the hypothesis that one can model both the annealed and quenched situations 
by working to second order in V,  relying on the replica or other arguments to justify 
the formulae used. 

Now 

(r2) = (1 r2 exp(-A - V)( exp( -A - v)) - I )  

where A = (3/21) 1 d s  r I 2  and V stands for J d s  E, V(r(s) - R,). 

Then 
Suppose we model the effects by writing an effective exponent B and put C = A - B. 

(r*)=[ r2exp[-B-(C+ V)] exp[-B-(C+ V)] 

Now studies of the excluded volume effect show that good results are obtained if it is 
recognised that C is of order V2 when calculated self-consistently using B, i.e. we can 
write, using ( ), to mean an average, 

At this point we can average over the R, to give, for example, ( r2  W ) ,  equal to 

[Gr][r(L) - r(O)]*c 1 d3R loL ds loL ds’ V[r(s) - R )  V( r(s’) - R )  exp[ -C( r ) ]  
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At this point we set ( r ’ )  = ( r ’ ) ,  so that our basic equation for B becomes 

( r 2 C ) B - ( r 2 ) ( C ) B  = ~ ( r ~ V I V l ) B - ~ ( r ~ ) ( V * V * ) B  - ( ryVl  vdB. (11) 

- f (  r2)( V ,  + (r‘ W B  - ( r2) (  - (4 V I  v 2 ) B .  ( 12) 

Finally we can add an excluded volume w 5 d s  5 ds‘6( r ( s )  - r (  s’))  = W say, giving 

( r ’ ~ ) ~  - ( r*)( c), = &r2 V I  

Thus the problem of an  annealed system is that of 

(3121) d s [ r ‘ ( s ) ] ’ + ( w - U )  d s  d s ’ 6 [ r ( s ) - r ( s r ) ]  (13) 1 5 1  

i I 1I Ii 
whereas the quenched system can be regarded as a two-walk system, since a straightfor- 
ward calculation using 

r:’+ r i 2 - w  ( 6 , , + ~ 2 2 - 2 6 1 2 ) - v  (611+622) (14 )  

to calculate [ r l (  L )  - r1(O)]* by the above fitting method gives equation (10) for B. To 
keep comparability with Flory’s argument we take three dimensions to begin with. 
Suppose the size of the polymer is R ;  then very crudely the mean-field argument would 
estimate w 6 by wL2/ R 3  and the I d s  rI2/ 1 term by R 2 /  Ll. Hence an  estimate of the 
free energy is R’/ L +  wL2/ R 3 ,  having a minimum at R’ - w2”L6”, first given by Flory. 
In no sense is this any more than an  indication of the way things go, but it is fast and  
useful. Let us now proceed to consider more generally what can be expected if a 
localisation were to take place within the radius R. One knows that a localised state 
will always have an entropy proportional to its length, for example a harmonic diffusion 
has a basic probability exp( -(: I q r 2 / l )  an  entropy ql where q is R-’. If we model the 
localisation by exp[-(3/21) 5 r f 2 - I  ( q 2 / l ) r 2 ]  the basic replacement of R 2 / L  will be 
L‘/ R. To handle both problems we argue that Iconfined exp( -I r”) is modelled by 
exp(-R2/L-  L / R ’ ) ,  w ismodelledby wL’/R3,1eaving U ( I ~ S , ~ + { ~ S ~ ~ ) - ~ V  I j S 1 2 .  The 
difference between these integrals lies in the correlation between rl and rl in the first 
integral and  its absence in the 6 [ r ,  - r2] integral. One can then argue that these 
terms differ by a term which is the ratio of the correlation length squared to the whole 
length of the chain, i.e. R’/ Ll. Therefore v [a,, + Szz-  SI2] is of the order of 
2u( L2/  R 3  - L/  R - L’/ R 3 ) .  Thus gathering u p  all the terms we have an  entropy (numeri- 
cal factors are ignored at this level of crudity) R 2 /  L +  L /  R 2 +  wL2/ R3 - vL/ R,  which 
isminimisedat R I L -  L / R 3 -  w L 2 / R 4 + v L I R 2 = O o r  R 5 + v L 2 R  = wL3+ L’R. Weoffer 
this as a generalisation of the Flory result R S  = wL3 in three dimensions. On a surface 
we have an  entropy R ‘ / L + L / R ’ + w ( L / R ) ’ - v L I n  R and hence R 4 + v L 2 R 2 =  wL3+ 
L2. The solution to this equation has the following range: 

t . = O  R’=  w , l ~ 2 ~ 3 / 2  L large 

w = o  R 2  = U-‘ L large 

u = w  R ’ =  L all L. 

For general w, u for large L one has R 2 =  ( w / v ) L .  The general solution is R 2  = 
$ [ - v L 2 +  ( u z L 4 + 4 w L 3 + 4 L ’ ) l i 2 ]  which is clearly always well behaved and extrapolates 
between W ~ ’ ~ L ~ ’ *  and ( w / u ) L .  (We emphasise that numerical constants have no 
standing whatever.) We now make a more formal attack on the problem. 
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3. The potential-well model 

In this section we follow Edwards and Muthukumar and differ from them only in 
deriving the next-order term in the free energy and by including the excluded volume. 
The problem is that when one models equation (14) by a harmonic well one would 
like to be able to model the swollen polymer as well. However, the q 2  term can only 
make it smaller. Edwards and Singh (1979) have suggested a very simple way to treat 
the swollen polymer problem, which is to use the model exp[-(3/21,) r ’ 2 ]  where I, > I. 
It turns out that this is unsatisfactory to study entropy, but is quite powerful if the 
value of ( r ’ )  is studied. Thus if one looks at the simple excluded volume problem 

) exp( -(3/2I) loL d s  r r 2  - w loL d s  ds‘  6 (  r (  s )  - r (  s’))  

and model it by 

(15) 

( r 2 ) = L I l + L [ 1 ; ( l / I l - l / / ) -  W ( L / I , ) ” ’ ] + O [  l 2  (16) 

and  calculates ( v ’ )  one finds 

where the term in the large round bracket in equation (15) gives rise to the term in 
the square bracket in equation (16). Thus, if I ,  is the effective Kuhn length, ( r 2 )  = LI, 
and l ; ( l / I -  1/11) = w ( L / I , ) ” ~ ,  leading to I, = W * ’ ~ L ’ ’ ~  as L+w,  the Flory limit and  
exponent. Note also that, for I, = 1 to be a solution, w = O .  We can study ( r ’ )  also in 
the confined case, and  can match the two solutions at the analogue of w = 0. Thus we 
model equation (14) by 

exp(-(3/21) J” rl’-(3/21) J” ri2--(;q’) J” ( r i t r ; ) )  

for contraction, and 

exp( -(3/2/,)  J” ( r ; ’ + r i ’ ) )  (18) 

for swelling and  evaluate I , ,  q from fitting ( r ’ ) ,  as in the Edwards and Singh method. 
The detailed integrals are placed in the appendix; they involve non-standard functions. 
In the case of swelling, one has the following form: 

I:( 1 / I -  1/ I ,)  = 7 2 1 i d  ’r( 1 +;d) l l (d/I l )2-d ‘ ( 2  - $ d ) - ’ d - ’ ( 3  - ;d ) - ’  ad 
(2.rr) 

x {W - ~ [ l  + d ( 2 - $ d ) ( 3  - ; d ) ] }  (19) 
valid for 2 < d i 4. 

In the case of contraction one has the following form: 

q-’[1 - ( I  + qL) e x p ( - q ~ ) ]  = f ( q ,  L,  w, U). 
Although f is expressed in terms of non-standard integrals and the analytic form o f f  
is not known, one still has the following small and  large q behaviour valid for d = 3  
and which can be easily calculated: 
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We offer here a simple interpolation formula between the small and  large q behaviour, 
i.e. 

f =  uq-”2[1 - e x p ( - q ~ ) ] ~ ” -  wLq-1’2[1 - e x p ( - q ~ ) ] ” ~ .  ( 2 1 )  

I ; ( l / I - l / I , )  = ( w -  EU)(L/II) (22 )  

Let us first consider d = 3 .  Equation ( 1 9 )  is, u p  to an  irrelevant prefactor, 

where E = $ in three dimensions. One sees from equations (21 )  and (22 )  that I ,  = 1 and 
q = 0 when w =$U. Both estimates, i.e. using the modified Kuhn length or the harmonic 
oscillator, provide the same results for the mean-squared end-to-end distance (R’)  = Ll. 
When w <$U, the chain contracts, and  one must use equation (21 ) .  Some limiting cases 
are: for a very long chain 

q-1= ,q-3/’- wLq- 

ql12 = ( 2 w L ) - ’ [  - 1 + ( 1  + 4wuL)”2]. 

or 

This gives q = u2 if wuL<< 1 ,  whereas in the opposite limit wuL >> 1 gives q = U /  wL, but 
one must still have q large, i.e. U > wL. Therefore (R’)  = u - ~  and (R’)  = wL/u, respec- 
tively, in these limits, and  one must also have w<< U for these limits to be valid. If we 
regard q = ‘ 1 / R 2 ’  and I ,  = ‘ R 2 / L ’  we can recover the crude extrapolation of the first 
section by noting that the form given there gives all the limits discovered from the 
precise mathematics above. In two dimensions, the left-hand side of equation ( 2 0 )  
remains the same, but the right-hand side differs from the previous case. We have 
here the estimates for both large and small q :  

f-ULZ - wL2 (qL<< 1 )  

f -W2-  w ( L / q )  ( q L  >> 1 ) .  
- 2  Therefore, for a very long chain, we have q-’  = uq 

(wL<< 1 )  and q = U /  W L  ( w L  >> 1 ) .  However, equation (22 )  now has E = 5 :  
- w( L / q ) ,  which is solved by q = U 

I ~ ( 1 / I - l / I 1 ) = ( w - 5 u ) L I  (23 )  
u p  to a prefactor. Again equations ( 2 1 )  and (23 )  give the same (R’) at q = 0 and  I = I ,  
when w = 5u. The analysis of limiting cases in three dimensions carries over here, i.e. 
for a very long chain one has 

Note that w and U in two dimensions have dimension of inverse contour length. The 
picture one gains from this analysis is that w = E U  is some sort of theta point where 
disorder, which tends to contract the polymer, and  excluded volume, which tends to 
swell the polymer, cancel each other exactly; at this point the polymer chain is a free 
random walk. In  the region where w > E U ,  excluded volume repulsion dominates and  
the chain swells in this region; one finds the Flory exponents that describe a self- 
excluded walk. When w << EU,  the chain tends to contract and is localised in one limit 
(wuL<< 1 ,  d = 3  and wL<< 1, d = 2 ) ,  i.e. ( R ’ )  is independent of the molecular weight 
and  behaves like u-2(d  = 3 )  and u - ’ ( d  = 2 ) ,  while in the other (wuL>> 1 ,  d = 3  and 
wL >> 1 ,  d = 2 )  ( R 2 )  = wL/ U, i.e. like a true random walk in behaviour but much smaller 
than a free random walk since w<< U. 
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Appendix. Calculation of E 

The self-consistency equation at the desired order is 

L / , ( l / I -  1/1,) = ( w  - U ) Z - 2 U J  

where 

Z = loL ds, loL ds, I ddk/(27r)d exp(-k21,1s, - s2//2d)(l ,  kls, - s21),/2d 

J = loL ds, loL d s , l  d d k / ( 2 r I d  e ~ p ( - k ~ L 1 , / 2 d ) ( L - 2 s , ) ~ ( l , k ) ~ / 2 d .  

(‘42) 

and 

(A3) 

A simple calculation for 2 < d < 4 shows that 

Q d  I , (  d /  I,)d’2L3-d12 I = 721+d/2r( 1 + fd) 
(2T) d(2- fd) (3  -fd) 

r(i + f d ) 2 ~ + d / 2 1 , ( d ~ 1 , ) d ’ 2 ~ 3 - d / Z  1 a d  J = - -  
12 (27r) 
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